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RESEARCH TURBINE FOR HIGH-TEMPERATURE CORE ENGINE APPLICATION 

I1 - EFFECT OF ROTOR TIP CLEARANCE ON OVERALL PERFORMANCE 

by Edward M. Szanca, Frank P. Behning, and Harold J. Schurn 

Lewis Research Center 

SUMMARY 

An experimental investigation was made of a 25.4-centimeter (10-in. ) tip diameter 
turbine to determine the effect of increasing rotor tip clearance on overall performance. 
The test turbine was a half-scale model of a 50.8-centimeter- (20-in. -) diameter re-  
search turbine designed for high-temperature core engine application. The test turbine 
w a s  fabricated with solid vanes and blades with no provision for cooling air and tested a t  
much reduced inlet-air pressure and temperature. 

Three radial tip clearances were investigated ranging from 2.3 to 6 .7  percent of 
the annular blade passage height. The turbine was operated at  design speed over a range 
of pressure ratios. Radial angle surveys at  the rotor exit were taken for each clearance. 

At the design radial clearance of 2.3 percent (0.0432 cm (0.017 in. )), design speed, 
and design specific work output, the total efficiency of the turbine w a s  88. 1 percent. The 
corresponding total pressure ratio was 1.803. At this pressure ratio, as the clearance 
was increased, the total efficiency decreased about 1. 7 percent for every 1 percent in- 
creased in radial clearance. 

other investigations. The losses due to radial clearance for the subject turbine were 
greater than for the referenced impulse turbine but less than for the two reaction tur- 
bines used in the comparison. 

Comparisons of the results obtained in this investigation were compared to those of 

INTRODUCTION 

Future engines of the turbofan variety wi l l  have high compressor pressure ratios, 
high turbine inlet temperatures, and high bypass ratios. The turbines will  require large 
amounts of coolant flow eminating from the vane, blades, stator end walls, and rotor 
shrouds. The core engine turbine component of these turbofans is characterized by 



small blade heights, high hub to tip radius ratios, low aspect ratios, and generally 
smaller outside diameters as compared to the turbine of pure turbojet engines designed 
for  similar applications. As a consequence, the rotor tip clearance can be a large per- 
centage of the blade annular passage height. The high temperatures encountered in ac- 
tual engines may also make it difficult to maintain close control over radial clearances. 
Previous investigations (refs. 1 to 3) have shown that radial clearance losses can be 
appreciable and a r e  influenced by such things as the amount of reaction across the rotor, 
blade hub to tip radius ratio, and blade aspect ratio. Also, it is reasonable to assume 
that the coolant flow from the rotor shroud may effect the radial clearance losses. 
Therefore, it was  desirable to determine the penalty associated with varying the radial 
clearances that may be encountered in the high-temperature application. 

Pr ior  to testing the turbine at the high inlet conditions encountered in actual engine 
operation, a full-scale 50. 8-centimeter- (20-in. -) diameter turbine w a s  designed and 
built under contract to determine the effects of large amounts of coolant flow on aerody- 
namic performance. This turbine was  designed to operate at an inlet temperature of 
2200 K (3960' R) and wil l  be tested at a reduced inlet temperature of 783 K (1410' R).  
However, the amount of coolant flow and the temperature ratio of primary air to coolant 
air for the reduced temperature test w i l l  simulate that of the high-temperature turbine. 
To determine the base performance of the cooled turbine, a half-scale turbine w a s  de- 
signed and fabricated with solid vanes and blades of the same aerodynamic profile but 
with no provisions for cooling air. This turbine was  tested over a range of speed and 
pressure ratios and the results reported in reference 4. 
basic configuration for the radial clearance study which is the subject of this report. 

The subject turbine has a tip diameter of 25. 4 centimeters (10 in.), a rotor blade 
height of 1.905 centimeters (0. 75 in. ), and a rotor tip clearance of 0 .0432  centimeter 
(0 .017  in. ). This  clearance represents 2 . 3  percent of the blade annular passage height. 
Two additional clearance values were investigated by successively removing metal from 
the tips of the rotor blades. 
centimeter (0 .025  and 0 . 0 5 0  in. ) which represented 3 . 3  and 6 . 7  percent of the blade an- 
nular height, respectively. 

All tests were conducted at an inlet pressure of 17.237 newtons per square centime- 
t e r  (25 .0  psia), an inlet temperature of approximately 306 K (550' R), and design equiv- 
alent speed. For each clearance the turbine was tested over a range of total pressure 
ratio from 1 . 3  to 2 . 8 .  Rotor exit angle radial survey were also taken for each clearance 
value. The effect of clearance on performance is presented in te rms  of weight flow, 
specific work output, exit flow angle, and turbine efficiency. In addition, the results of 
clearance as a function of efficiency are compared to the experimental results of refer-  
ences 1 to 3. 

This turbine also provides the 

The additional clearance values were 0 .0635  and 0. 1270 
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vane or blade height, cm; in. 

chord length, cm; in. 

diameter, cm; in. 

specific work, J/g; Btu/lb 

turbine shaft speed, rpm 

pressure, N/cm abs; psia 

radius, cm; in. 

pitch, cm; in. 

absolute temperature, K; OR 

blade velocity, m/sec; ft/sec 

absolute gas  velocity, m/sec; ft/sec 

relative gas velocity, m/sec; ft/sec 

mass flow, kg/sec; lb/sec 

absolute gas  flow angle measured from the axial direction, deg 

ratio of specific heat 

ratio of inlet total pressure to U. S .  standard sea-level pressure, PO/P* 

function of y used in relating parameters to those using air inlet conditions at 
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U. S. standard sea-level conditions, 
Y 

static efficiency (based on inlet total- to exit-static pressure ratio) 

total efficiency (based on inlet total- to exit-total pressure ratio) 

squared ratio of critical velocity at turbine inlet to critical velocity at U. S .  stand- 

ard sea-level air, Vcr/V*cr ( 
torque, N-m; ft-lb 

turbine speed, rad/sec 

Subscripts : 

c r  

b blade 

condition corresponding to Mach number of unity 
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h hub section 

m mean section 

t tip section 

v vane 

x axial component 

0 

1 

2 

Super sc  r ipt s : 

' absolute total state 
* 

station at turbine inlet (fig. 8) 

station at stator exit (fig. 8) 

station at turbine exit (fig. 8) 

U. S. standard sea-level conditions (temperature equal to 288.15 K (518.7' R), 
2 pressure equal to 10. 13 N/cm abs (14.7 psia)) 

TURBINE DESCRIPTION 

The selected design criteria, which a r e  typical for the first stage of a two-stage 
high-temperature axial flow core engine turbine are summarized in table I. The hot 
engine conditions are for a full-scale turbine using an ASTM-A-1 fuel to air ratio of 
0.0435 while the equivalent conditions a r e  given for a half-scale model of this turbine. 
The numbers in the table do not include the coolant flow rates  nor the effect of coolant 
flow on turbine performance. 

The velocity diagram evolved to meet the design aerodynamic requirements is shown 
in figure 1. All quantities represent the free  stream uniform flow conditions. Pertinent 
test-turbine geometry a r e  presented in table II. 

The test-turbine stator was  fabricated with untwisted vanes of constant mean-section 
profile, ignoring the relatively small  amount of twist (about 3') from hub to tip if de- 
signed for free-vortex conditions. 
and simple radial equilibrium. 
cooled) vanes and blades. The vanes and blades for  the turbine are characterized by 
blunt leading and trailing edges, low aspect ratio, and high thickness to chord ratios. 
All of these geometric factors a r e  considered detrimental to high turbine efficiency. 

The vane and blade design surface pressure distributions at the mean section a r e  
taken from reference 4 and shown in figures 2 and 3, respectively. 

Vane profile coordinates a r e  presented in table ID; rotor blade coordinates a t  the 
hub, mean, and tip section a r e  given in table IV. All dimensions a r e  for the half-scale 

The rotor blades were designed fo r  free-vortex flow 
The subject investigation was  conducted using solid (un- 
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test model. A photograph of the stator i s  presented in figure 4. Similarly, a photograph 
of the rotor assembly is shown in figure 5. 

I 

I 

APPARATUS, INSTRUMENTATION, AND PROCEDURE 

Apparatus 

The apparatus consisted of the turbine as  described in the preceding section, a 
cradled dynamometer to absorb the power output of the turbine while controlling its 
speed and an inlet and exhaust piping system with flow controls. The arrangement of the 

dry pressurized a i r  supplied from the laboratory a i r  system. Before reaching the tur- 
bine, the air was filtered, and measured with a calibrated flat-plate orifice. Metering 
of the air into the turbine was accomplished by a remotely controlled pressure regulating 
valve. After flowing through the turbine, the air was  exhausted into the laboratory alti- 
tude exhaust system. Turbine exhaust pressure was controlled by a remotely operated 
butterfly valve in the exhaust piping. 

A 224-kilowatt (300-hp) cradled dynamometer was used to absorb turbine shaft out- 
put power, control speed, and measure torque. The dynamometer was coupled to the 
turbine shaft through a gearbox, which provided relative rotative speeds between dyna- 
mometer and turbine of 1.0 to 4.25. The dynamometer and gearbox frames were bolted 
together and the entire assembly floated on hydrostatic oil bearings. Figure 7 is  a 
photograph of the test facility. 

I experimental equipment is shown schematically in figure 6. The turbine w a s  driven by 

Instrum entat ion 

A schematic cross section of the turbine is shown in figure 8. Also shown on this 
figure a r e  the instrument measuring stations. 

At the turbine inlet (station 0), the instrumentation consisted of static pressure and 
total temperature measuring devices. The temperature w a s  measured with three ther- 
mocouple rakes, each containing two thermocouples located at  the area center radii of 
two equal annular areas.  Static pressure w a s  obtained from eight taps with four on the 
inner wal l  and four on the outer wall. The inner and outer taps were located opposite 
each other and were spaced 90' apart about the circumference. 

eight static pressure taps. These taps were spaced 90' apart with four on the inner and 
four on the outer as described for station 0. 

The instrumentation at station 1, between the stator and the rotor, consisted of 

At the turbine outlet, station 2, measurements of static pressure, total pressure, 
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total temperature, and flow angle were made. The static pressure was measured with 
eight wal l  taps located as described for stations 0 and 1. 
measured with an angle sensitive probe and a self-alining probe actuator. This probe 
was also used to obtain the measured flow angle from the rotor hub to the rotor tip at 
the turbine exit. Also mounted on the angle measuring probe were provisions for deter- 
mining total pressure and total temperature. 

torque arm attached to the dynamometer stator. 

The outlet flow angle was 

Turbine torque w a s  transmitted to a commercial strain-gage load cell through a 

The rotational speed was detected by a magnetic pickup and shaft mounted gear. 
All pressures were measured with calibrated electrical transducers. A 200 channel 

data acquisition system w a s  used to measure and record the electrical signals from the 
transducers. 

Procedure 

Turbine performance was  obtained at nominal turbine inlet conditions of 17.237 
newtons per square centimeter (25.0 psia) pressure and ambient temperature (approxi- 
mately 306 K or  550' R). Data were obtained at design equivalent speed and over a 
range of inlet- to exit-total pressure ratios from 1.3 to 2.8. A rotor exit survey of flow 
angle w a s  made at  design equivalent speed and at a number of pressure ratios bracketing 
the design pressure ratio. The variation in angle with radius ratio at design equivalent 
speed and specific work output was determined from cross  plots of the aforementioned 
data. 

Tests conducted with this turbine at the design rotor blade radial clearance of 
2.3 percent (0.0432 cm or  0.017 in. ) have been reported in reference 4. The results of 
these tests a t  design speed a r e  repeated in this report. Two other clearances were in- 
vestigated, these were 3.3 percent (0.0635 cm o r  0.025 in. ) and 6.7 percent (0. 1270 cm 
or 0.050 in. ). 
the necessary material from the rotor tips until the desired clearance was obtained. 

Torque calibrations were obtained before and after each performance run. The 
calibrations were obtained with the dynamometer in the motoring mode, rotating the 
turbine at a speed of approximately 4500 rpm. Thus, most of the effects of bearing and 
seal friction were accounted for in the calibration. Turbine windage losses were mini- 
mized during the calibrations by evacuating the air from the turbine housing. 

The turbine was  rated on the basis of inlet- to exit-total pressure ratio efficiency. 
Inlet and outlet total pressures were calculated from mass  flow, static pressure,  total 
temperature, and flow angle. At the inlet, the flow angle a, w a s  assumed to be axial. 
At the exit, the total temperature was computed from measured values of inlet total 
temperature and the specific work output of the turbine. 

The clearances were increased after each ser ies  of tests by machining 
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RESULTS AND DISCUSSION 

The results of this  investigation a r e  presented in three sections. The first section 

The 
describes the overall performance of the turbine with the design radial clearance of 
2.3 percent (0.0432 cm or  0.017 in. ) over a range of speeds and pressure ratios. 
second section compares turbine performance at design speed for three radial clear- 
ances: 2.3 percent (0.0432 cm or 0.017 in. ), 3.3 percent (0.0635 cm or  0.025 in. ), 
and 6.7 percent (0.1270 cm or 0.050 in. ). Results of radial surveys of flow angle at 
the rotor exit a r e  also presented. The third section is a comparison of efficiency loss 
as a function of radial clearances for the subject turbine as compared to some results 
of previous studies. 

A l l  results are presented in terms of air equivalent values. 

Turbine Overall Performance 

The overall performance map, torque curves, and mass flow curve for the subject 
turbine (figs. 9 to 11) were originally reported in reference 4 and a r e  repeated here for 
completeness. The reference total pressure ratio, however, was  changed from 1.817 as 
reported in reference 4 to 1.803 in the subject report. This latter pressure ratio cor- 
responds to the point at which the design equivalent specific work of 39.572 joules per 
gram (17.00 Btu/lb) is obtained with the design radial clearance 0.432 centimeter 
(0.017 in. ). The total efficiency at this pressure ratio is 88. 1 percent as compared to 
88.0 percent reported in reference 4. The mass flow and torque at design speed for a 
pressure ratio of 1.803 are 1.187 kilogram per second (2.617 lb/sec) and 36.268 newton- 
meter (26.75 ft-lb), respectively. 

Turbine Performance with Increased Rotor Tip Clearance 

Mass flow characteristics. - The mass  flow Ewl/Ocr/6 characteristics of the sub- 
ject turbine for three values of radial clearance a r e  shown in figure 12. All three 
curves a r e  plotted as a function of overall total pressure ratio and at design equivalent 
speed. The mass flow curve for the turbine with the 0.0432-centimeter (0.017-in. ) 
rotor tip radial clearance is taken from figure 11. 

At any given pressure ratio, the mass flow increased with radial clearance. This 
w a s  due to the increased through flow over the rotor tip as a result of increased clear- 
ance. A comparison of the curves also shows that as the radial clearance increased, 
choking occurred at a higher overall pressure ratio. 
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At a total pressure ratio of 1.803 the mass flows for the various clearances are 
summarized in table V. 

The data from table V w a s  plotted in figure 13 and shows the change in equivalent 
mass  flow (expressed as a percentage of the mass flow obtained at the lowest tip clear- 
ance value) plotted against tip clearance as a percentage of the blade annular passage 
height. This figure shows that the mass flow increased by about 0 .95 percent as the ra- 
dial clearance was increased from 0.0432 to 0. 1270 cm (0.017 to 0.050 in. ). This rep- 
resents an increase in mass flow of 0.22 percent for an increase in tip clearance of 
1 percent of blade annular passage height. 

Specific work characteristics. - The variation of equivalent specific work output, 
Ah'/Ocr, with overall pressure ratio, pb/pi, for three values of radial clearance a r e  
shown in figure 14. As in the case of the mass  flow curves, the data is for design speed 
only. 

as the radial clearance increased. The reduction in specific work output with radial 
clearance increases will  be discussed in more detail in the next section on rotor exit 
angle surveys. 

radial clearances a r e  summarized in table VI. 

output (expressed as a percentage of the specific work output a t  the lowest tip clearance 
as a percentage of the blade annular passage height. This figure shows that the specific 
work output decreased by 7.4 percent as the radial clearance w a s  increased from 0.0432 
to 0. 1270 cm (0.017 to 0.050 in. ). 
of 1.7 percent for an increase in tip clearance of 1 percent of blade annular passage 
height. 

bine exit flow angle at design equivalent speed and a pressure ratio of 1.803 for three 
radial clearances. These angle surveys were conducted at one common circumferential 
position and a r e  plotted against radius ratio. 

The results of the survey show that the rotor exit angle near the tip changes signifi- 
cantly as the radial clearance is increased. At the smallest rotor tip clearance of 
2.3 percent, the maximum measured exit flow angle was 5.0' near the tip. At the larg- 
est tip clearance of 6 . 7  percent the maximum measured exit flow angle was  about 24.0' 
from the axial direction. The increases in angle persisted from the tip section to about 
the mean section for the two smaller clearances. 
w a s  felt  along the entire blade span although much more significantly near the tip. 

an indication of less turning of the mass  flow near the rotor tip. 
due to greater unguided through flow over the rotor tip and to greater tip leakage flow 
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Figure 14 shows that at any given pressure ratio, the specific work output decreased 

At a total pressure ratio of 1.803, the equivalent specific work output for the three 

The data from table VI w a s  plotted in figure 15 and shows the change in specific work 

This represents a decrease in specific work output 

Rotor exit radial surveys. - Figure 16 shows the results of a radial survey of tur-  

The effect of the largest clearance 

The increased positive angle at the rotor exit as radial clearance w a s  increased is 
This underturning was  



over the blade tip f rom suction to pressure surface. The net result was an increase in 
the exit swirl ve1.ocity toward the positive direction which reduces the work output of the 
turbine and increases tip clearance losses. This was evidenced by a reduction in the 
torque as the radial clearance was increased as mentioned earlier and shown in fig- 
ure 14. 

Turbine efficiency comparison. - At design speed and a pressure ratio of 1.803 the 
total efficiencies obtained for the three radial clearances a r e  summarized in table VII. 
The degradation in efficiency as radial clearance w a s  increased is a direct result of in- 
crease in mass  flow, the decrease in torque due to the underturning near the blade tip 
region and higher losses. 

The data from table VII was plotted in figure 17 and shows the change in total effi- 
ciency (expressed as a percentage of the efficiency obtained at the lowest tip clearance 
value) plotted against tip clearance as a percentage of the blade annular passage height. 
This figure shows that the efficiency decreased by 7.3 percent as the radial clearance 
was increased from 0.0432 to 0.1270 centimeter (0.017 to 0.050 in. ). This represents 
a decrease of about 1.7 percent for an increase in tip clearance of 1 percent of blade 
annular passage height. 

Static pressure comparison. - The static pressure variation through the turbine at 
design speed and an overall total pressure ratio of 1.803 for  the three clearances inves- 
tigated is shown in figure 18. The pressure is presented as the ratio of the local static 
pressure at either the hub o r  tip over the total pressure at the turbine inlet. 

exit of the turbine remained relatively constant. Between the stator and rotor however, 
an increase in clearance resulted in a static pressure drop at both the hub and tip posi- 
tion of the blading. 

creased was the result of decreased rotor tip reaction due to the increase in unguided 
flow area over the blade tip as the tip clearance was increased. 

For all clearances, the static pressures at the inlet to the turbine as well as the 

The increase in pressure ratio across  the stator as the radial clearance was in- 

Comparison of Results with Other Turbine Investigation 

A comparison of efficiency loss with radial clearance for various turbines is shown 
in figure 19. The comparisons were made on the basis of static efficiencies since this 
was the only information available in the references. The efficiencies are expressed 
as the ratio of efficiency degradation over efficiency at the minimum o r  design clear- 
ance. The clearance is expressed as a percent of annular passage height. 

Included on the curve a r e  a single-stage impulse turbine (ref. 1) and two turbines 
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with rotor blade row reaction (refs. 2 and 3). In this report, reaction is defined as 
1 - (wlm,)2. 

A s  expected, the turbines with the highest reaction showed the greatest loss in ef- 
ficiency with increasing radial clearance. For example, the turbine of reference 2, 
which was designed for a blade row reaction of 0.862 at the tip, showed a loss of 3 .7  
points in efficiency for every 1 percent of radial clearance. The turbine of reference 3 
which was designed for a blade row reaction of 0.834 at the tip section showed a 3.2 
point drop in efficiency for each 1 percent increase in radial clearance. By contrast, 
the impulse turbine of reference 1 experienced a loss of 1.75 points in efficiency for 
every 1 percent increase in radial clearance. The subject turbine, which was  designed 
for a reaction of 0.805 at the tip section, showed a loss in efficiency 1 . 9  points for every 
every 1 percent increase in radial clearance. 

by the degree of rotor tip reaction being greater for higher reaction. 
It would be expected that the effect of tip clearance on mass flow would be governed 

SUMMARY OF RESULTS 

An experimental investigation of a 25.4-centimeter (10-in. ) tip diameter turbine was 
made to determine the effect of rotor radial tip clearance on turbine overall perform- 
ance. The test turbine was a half-scale model of a 50.8-centimeter (20-in. ) research 
turbine designed for high-temperature core engine application. The test turbine w a s  
fabricated with solid vanes and blades with no provision for cooling air. 

of the annular blade passage height. 
speed over a range of inlet- to exit-total pressure ratios of 1 . 3  to 2.8. Al l  performance 
parameters a re  presented in equivalent te rms  based upon standard sea-level conditions. 

At the design radial clearance of 2 .3  percent (0.0432 cm o r  0.017 in. ), design 
speed, and an overall pressure ratio of 1.803, the total efficiency of the subject turbine 
w a s  88.1 percent. At this pressure ratio the corresponding specific work output was  
39.572 joules per gram (17.00 Btu/lb). All  comparisons of performance among the three 
radial clearances were at design speed, a pressure ratio of 1.803, and are as follows: 

1. The total efficiency and specific work output decreased linearly with increasing 
radial tip clearance. 
about 1 . 7  percent. 

2. The mass flow increased linearly with increasing radial tip clearance. 
1 percent increase in radial clearance the mass flow increased 0.22 percent. 

3.  Radial surveys taken at  the turbine exit showed that the exit flow angle varied as 
the rotor tip clearance was  increased. 
the mean section and tip section of the blades where large underturning was  observed. 

Three radial clearances were investigated. These were 2. 3, 3.3, and 6.7 percent 
For each clearance, data were taken at design 

For every 1 percent increase in radial clearance, both decreased 

For every 

The most noticeable changes occurred between 
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4. Comparisons of the results of this investigation with those of three reference tur- 
bines indicate similar effects of clearance on turbine efficiency. The turbines with reac- 
tion through the rotor blade experienced a greater loss in efficiency with increasing ra- 
dial clearance than did the impulse turbine. The subject turbine, whieh was  designed for 
a moderate amount of reaction showed a loss in efficiency somewhat greater than the im- 
pulse turbine but less than that for the two referenced reaction turbines. 

' 
l 
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TABLE I. - TURBINE DESIGN OPERATING VALUES 

Performance parameter 

Tip diameter, Dt, cm (in. ) 
Inlet total temperature, ~ b ,  K (OR) 

2 Inlet total pressure, pb, N/cm abs (psia) 
Mass flow, w ,  kg/sec (Ibm/sec) 
Turbine rotative speed, N ,  rpm 
Specific work output, Ah', J/g (Btu/lbm) 
Mean blade speed, Um,  m/sec (ft/Sec) 
Inlet- to exit-total pressure ratio, p y p '  2 
Total efficiency, q, percent 

Hot engine conditions 
(ASTM-A-1/Air = 0.0435) 

Air-equivalent cond't' I ions 

50. 8 (20. 0) 
2200 (3960) 

386.1 (560.0) 
63.82 (140.72) 

16 687 
287.25 (123.4) 

410.6 (1347) 
- - - - _ _ _ - _ - - - -  
_ _ _ _ _ _ _ _ _ - _ _ _  

25.4 (10.0) 
288.2 (518.7) 

1.207 (2.660) 
12 388 

39. 572 (17.00) 
152.4 (500.0) 

1.818 
0.87 

io. 13 (14.7) 

TABLE II. - TEST TURBINE GEOMETRY 

Stator 

Mean diameter, Dmv, cm (in.) . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . , . . 23.495 (9.25) 
Vane height, b,, cm (in. ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.905 (0.75) 
Axial chord, cxv, cm (in. ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.905 (0.75) 
Axial solidity, (c,ds,)m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.929 
Aspect ratio, bJc, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.000 
Number of vanes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 
Leading edge radius, cm (in.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . , , . . 0.254 (0,100) 
Trailing edge radius, cm (in. ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0445 (0.0175) 

Rotor 

Mean diameter, Dmb, cm (in. ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.495 (9.25) 
Blade height, %, cm (in. ). . . . . . . . . . e . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.905 (0.75) 
Axial chord, cxb, cm (in. ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.715 (0.675) 
Axial solidity, (cxd%)m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 6 5 2  
Aspect ratio, v c x b .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.111 
Number of blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 
Tip clearance, cm (in.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.043 (0.017) 
Leading edge radius, cm (in.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1494 (0.0588) 
Trailing edge radius, cm (in. ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0445 (0.0175) 
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TABLE 111. - STATOR VANE COORDINATES 

in. 

3.100 
.___.. 
.___._ 
___.__ 

_ _ - _ _ _  

____._ 

.0125 
,0235 
.0325 
,0405 
,0475 
.0525 
,0575 
,0650 
,0710 
.0740 
.0755 
,0750 
,0735 
,0695 
.0650 
,0585 
.0515 
.0435 
.0355 
,0260 
,0160 
,0050 
,0175 

Axis of 
rotation 

ern 

0.2540 
,4255 
. 5029 
,5613 
,6071 
.6439 
.6731 
,6960 
.7131 
,7246 
,7341 
,7366 
.7379 
,7315 
.7163 
.6909 
,6617 
,6287 
. 5944 
. 5550 
. 5156 
,4724 
,4255 
.3734 
. 3188 
.2591 
. 1956 
. 1295 
,0445 

Mean Section 

Orientation angle, ‘ 0 ,  deg 

,44037’ 

ern 

0 
,064 
,127 
,191 
,254 
.318 
,381 
,445 
.508 
. 512 
,635 
.699 
,762 
,889 

1.016 
1.143 
1.270 
1.397 
1.524 
1.651 
1.778 
1.905 
2.032 
2.159 
2.286 
2.413 
2. 540 
2.667 
2.776 

- 

X 
- 

in. - 
0 

,025 
,050 
,075 
,100 
. 125 
,150 
.175 
,200 
.225 
,250 
.275 
,300 
,350 
,400 
.450 
. 500 
. 550 
,600 
.650 
,700 
, I50 
,800 
,850 
.goo 
.950 

1.000 
1.050 
1.093 

- 

yL 1 yu 
ern 

I. 2540 
- 

.0318 
,0597 
,0826 
,1029 
,1207 
,1334 
.1461 
. 1651 
.1803 
.1880 
.1918 
.1905 
.1867 
.1765 
.1651 
.1486 
,1308 
,1105 
,0902 
.0660 
,0406 
,0127 
.0445 

in. 

1.100 
- 

,1675 
. 1980 
.2210 
.2390 
.2535 
.2650 
,2740 
.2810 
,2860 
,2890 
.2900 
,2905 
,2880 
,2820 
.2720 
.2605 
,2415 
,2340 
,2185 
.2030 
,1860 
.1675 
. 1470 
.1255 
,1020 
,0770 
,0510 
,0175 

Stacking axis coordinates * 
1.7318 1.0755 0,0445 0.0175 
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TABLE lV. - ROTOR BLADE COORDINATES 

Mean sect ion X Hub sect ion T i p  sec t ion  

in. 

D 
025 
050 
075 
100 
,150 
,200 
,250 
,300 
,350 
,400 
.450 
.500 
,550 
,600 
.650 
. I O 0  
750 
751 
.758 

c m  

0.1494 
_ _ _ _ _ _  
_ _ _ _ _ _  
_ _ _ _ _ _  
_ _ _ _ _ _  
.1422 
.2210 
.2794 
,3137 
.3353 
,3353 
.3175 
.2870 
.2413 
.la54 
.1219 
.0533 

_ _ _ _ _ _  
_ _ _ _ _ _  
.0445 

~ ~~ 

X 

c m  in. 

0.810 0.319 

~~~ 

Y X Y X Y 

c m  in. c m  in. c m  in.  c m  in. c m  in. 

0.386 0.152 0.772 0.304 0,361 0,142 0.742 0.292 0.328 0.129 

Axis  of 
rotat ion 

Orientat ion ang le ,  cp, deg  

30'13' 24' 17'54' 

YL YU yL P 

c m  

3.1494 
,3302 
,4229 
.4877 
,5448 
,6223 
,6655 
.6795 
,6693 
.6414 
.6007 
,5486 
,4877 
.4191 
.3454 
,2629 
,1715 
,0445 

_ _ - - - -  
_ _ _ _ _ _  

J 

c m  in. in .  in. 

1.0588 
,1300 
,1665 
,1920 
,2145 
,2450 
,2620 
.2675 
,2635 
,2525 
.2365 
.2160 
,1920 
. 1650 
,1360 
,1035 
.Of575 
,0175 

_ _ _ _ _ -  
_ _ _ _ _ _  

in. 

1.0588 
,1275 
,1700 
.2000 
,2215 
,2580 
,2805 
.2920 
,2930 
,2835 
,2670 
,2455 
,2205 
.1925 
.1585 
.1210 
.0800 
____-. 

_ _ _ _ _ -  
,0175 

in. 

0.0588 
_ _ _ _ _ _  
_ _ _ _ _ _  
_ _ _ _ _ -  

.0165 

.0520 
,0790 
,0990 
,1105 
.1150 
,1140 
.lo70 
.0940 
,0770 
.0575 
.0365 
.0140 
,0175 

- - - _ _ _  
- - _ _ _ _  

in. 

0.0588 
_ _ _ _ _ _  
_ _ _ _ _ -  
_ _ _ _ _ _  
_ _ _ _ _ -  
,0560 
.0870 
,1100 
,1235 
,1320 
,1320 
.1250 
.1130 
,0950 
,0730 
.0480 
,0210 

_ _ _ _ _ -  
_ _ _ - - -  

,0175 

c m  c m  

1.1494 
.3239 
,4318 
.5080 
,5626 
,6553 
,7125 
,7417 
.I442 
.7201 
,6782 
.6236 
. 5601 
.4890 
.4026 
,3073 
.2032 

_ _ _ _ _ -  
_ _ _ _ - -  
.0445 

c m  

). 1494 

.0419 

. 1321 
,2007 
.2515 
,2807 
.2921 
.2896 
.2718 
.2388 
,1956 
,1461 
.0927 
.0356 
.0445 

_ _ - _ _ _  
_ _ _ _ _ _  

c m  

0 
.064 
.127 
,191 
,254 
,381 
. 508 
.635 
. I 6 2  
,889 
1.016 
1.143 
1.270 
1.397 
1. 524 
1.651 
1.778 
1.905 
1.908 
1.975 

0.1494 
_ _ _ _ _ _  
_ _ _ _ - _  
_ _ _ _ _ _  
,0419 
.1257 
,1803 
,2184 
,2426 
,2464 
.2388 
,2210 
,1943 
,1575 
,1168 
.0737 
,0279 

_ _ _ _ - -  
.0445 

_ _ _ _ _ _  

3.0588 
_ _ _ _ _ _  
_ _ _ _ _ _  
_ _ _ _ - -  
.0165 
,0495 
.0710 
,0860 
,0955 
,0970 
.0940 
.0870 
.0765 
,0620 
,0460 
,0290 
.OllO 

_ _ _ _ _ -  
.0175 

_ _ _ _ _ _  

3.1494 
,3023 
,3874 
.4483 
,4978 
,5664 
,6007 
,6071 
. 5931 
.5664 
.5283 
,4801 
,4305 
,3747 
,3099 
,2375 
.1575 

_ _ _ _ _ _  
,0445 
_____. 

3.0588 
.1190 
,1525 
,1765 
,1960 
,2330 
,2365 
,2390 
,2335 
,2230 
,2080 
,1890 
,1695 
,1475 
.1270 
.0935 
,0620 

_ _ - - _ _  

,0175 
_ _ _ _ _ _  

Stacking axis coord ina te s  
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TABLE V. - CHANGE IN EQUIVALENT 

Radial clearance 

Percent cm in. 

2.3 0.0432 0.017 
3.3 .0635 .025 
6. 7 . 1270 .050 

MASS FLOW WITH AN INCREASE 

Mass flow 

kg/sec lb/sec 

1. 187 2.617 
1.192 2.628 
1.198 2.642 

Radial clearance 

TABLE VI. - CHANGE IN EQUIVALENT 

SPECIFIC WORK WITH AN INCREASE 

IN RADIAL CLEARANCE 

I Equivalent spe- 
cific work 

Radial clearance 

in. Percent cm 

2.3 0.0432 0.017 
3. 3 .0635 .025 
6.7 . 1270 .050 

1 Pe;;;t cm in. J /g Btu/lb 1 
2. 3 0.0432 0.017 39. 572 17.00 

.0635 .025 38.711 16.63 

. 1270 .050 36.826 15.82 

Total ef- 
f iciency, 
percent 

88. 1 
86.2 
82.0 

TABLE VII. - CHANGE IN TOTAL 

EFFICIENCY WITH AN INCREASE 

IN RADIAL CLEARANCE 
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(a) Hub section; radius rat io rhlrt = 0.850. 

1 (v/vcr)o 0. ~1 

0.465 

36.70 

(U/Vcr)l = 0.491 

-17.8' (W/Wcr), = 0.749 A- ( \ / / \ /  \ - 9.428 

= 0.395 

(b) Mean section; radius rat io rm/rt = 0.925, 

i(V/Vcr)o 0.231 

(c) Tip section; radius rat io rtlrt = 1.OOO. 

Figure 1. -Tu rb ine  design velocity diagram for  twisted rotor 
blades. 



Fraction of axial chord length 

F igure 2. - Design surface static pressure distr ibution at stator mean section. 

1.0 

Fraction of axial chord length 

Figure 3. - Design surface static pressure distr ibution at rotor mean section. 

17 



Figure 4. - Turbine stator. 

C-71-4256 

C -73 

Figure 5. - Turbine rotor. 
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Figure 6. -Test installation schematic. 
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Figure 7. -Test facility. 

Instrumentation station 

f 

Figure 8. - Schematic of turbine test section. 
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Figure 9. - Overall turbine performance map. 
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Figure 11. - Variation of mass flow with pressure ratio and speed for twisted rotor blade configuration. 
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Figure 13. - Change in equivalent mass flow wi th  ra- 
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F igure 14. -Var ia t i on  of specific work output  w i t h  pressure rat io at design equivalent speed. 
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